產(chǎn)品細(xì)節(jié)介紹
3BSE050092R65配套控制器
熱容量使用量呈指數(shù)衰減,以模擬電機(jī)的冷卻。冷卻速度基于電機(jī)運(yùn)行時(shí)的運(yùn)行冷卻時(shí)間常數(shù),或電機(jī)運(yùn)行時(shí)停止冷卻時(shí)間常數(shù)停止。輸入的冷卻時(shí)間常數(shù)是總冷卻時(shí)間的五分之一,從使用的100%熱容量到使用的0%熱容量。
369具有學(xué)習(xí)冷卻時(shí)間常數(shù)的獨(dú)特能力。僅當(dāng)定子RTD與369相連。學(xué)習(xí)到的冷卻時(shí)間算法在電機(jī)冷卻時(shí)觀察電機(jī)的溫度,因此確定冷卻所需的時(shí)間長(zhǎng)度。如果無(wú)法從電機(jī)制造商處檢索冷卻時(shí)間,則必須啟用學(xué)習(xí)冷卻時(shí)間(如果定子RTD已連接)。
由于轉(zhuǎn)子旋轉(zhuǎn),電機(jī)在運(yùn)行時(shí)會(huì)產(chǎn)生扇形動(dòng)作。因此,運(yùn)行冷卻時(shí)間通常為停止冷卻時(shí)間的一半。
有關(guān)如何確定冷卻時(shí)間常數(shù)的更多詳細(xì)信息,請(qǐng)參閱冷卻時(shí)間選擇應(yīng)用說(shuō)明隨電機(jī)一起提供。
RTD偏置這將使定子RTD傳感器的溫度包含在熱容量計(jì)算中。這該模型根據(jù)定子溫度確定了所用的熱容量,是獨(dú)立于用于計(jì)算所用熱容量的過(guò)載模型。RTD偏置是一個(gè)備用保護(hù)元件比如失去冷卻或環(huán)境溫度異常高。有三個(gè)參數(shù)需要設(shè)置:RTD偏置最小值,RTD偏置中點(diǎn),RTD偏置最大值。
RTD偏差最小值設(shè)置為40°C,即環(huán)境溫度(從數(shù)據(jù)表中獲得)。
RTD偏置中點(diǎn)
中心點(diǎn)溫度設(shè)置為電機(jī)的熱運(yùn)行溫度,計(jì)算如下:定子溫升+環(huán)境溫度。
根據(jù)數(shù)據(jù)表,定子的溫升為79°K。因此,RTD中心點(diǎn)溫度為設(shè)置為120°C(79+40)。
RTD偏差最大值
該設(shè)定值設(shè)置為絕緣額定值或稍低。該電機(jī)使用F級(jí)絕緣,額定值為155°C。
過(guò)載曲線(xiàn)
如果只提供了一條熱極限曲線(xiàn),則所選的過(guò)載曲線(xiàn)應(yīng)位于其下方。當(dāng)熱極限和冷極限曲線(xiàn),所選過(guò)載曲線(xiàn)應(yīng)在兩條曲線(xiàn)之間擬合,并使用編程的熱/冷比在熱容量算法中考慮電機(jī)的熱狀態(tài)。最佳擬合369標(biāo)準(zhǔn)曲線(xiàn)為曲線(xiàn)#4,如第7-9頁(yè)圖7-2:電機(jī)熱極限所示。
短路跳閘
短路跳閘應(yīng)設(shè)置為高于最大鎖定轉(zhuǎn)子電流,但低于保險(xiǎn)絲的短路電流。
數(shù)據(jù)表顯示最大堵轉(zhuǎn)電流為550%FLC或5.5×FLC。具有瞬時(shí)延時(shí)的6×FLC設(shè)置將是理想的,但由于啟動(dòng)要求異常高,可能會(huì)導(dǎo)致誤跳閘,而負(fù)載是耦合的。如果需要,將S/C級(jí)別設(shè)置為最高8×FLC,以覆蓋這些條件。
PROGRAMMING EXAMPLE 7
The Thermal Capacity Used quantity decays exponentially to simulate the cooling of the motor. The rate of cooling is based upon the running cool time constant when the motor is running, or the stopped cool time constant when the motor is stopped. The entered cool time constant is one fifth the total cool time from 100% thermal capacity used down to 0% thermal capacity used. The 369 has a unique capability of learning the cool time constant. This learned parameter is only functional if the Stator RTDs are connected to the 369. The learned cool time algorithm observes the temperature of the motor as it cools, thus determining the length of time required for cooling. If the cool times can not be retrieved from the motor manufacturer, then the Learned Cool Time must be enabled (if the stator RTDs are connected). Motors have a fanning action when running due to the rotation of the rotor. For this reason, the running cool time is typically half of the stopped cool time. Refer to the Selection of Cool Time application note for more details on how to determine the cool time constants when not provided with the motor. RTD Biasing This will enable the temperature from the Stator RTD sensors to be included in the calculations of Thermal Capacity. This model determines the Thermal Capacity Used based on the temperature of the Stators and is a separate calculation from the overload model for calculating Thermal Capacity Used. RTD biasing is a back up protection element which accounts for such things as loss of cooling or unusually high ambient temperature.
There are three parameters to set
RTD Bias Min, RTD Bias Mid, RTD Bias Max. RTD Bias Minimum Set to 40°C which is the ambient temperature (obtained from data sheets). RTD Bias Mid Point The center point temperature is set to the motor’s hot running temperature and is calculated as follows: Temperature Rise of Stator + Ambient Temperature. The temperature rise of the stator is 79°K, obtained from the data sheets. Therefore, the RTD Center point temperature is set to 120°C (79 + 40). RTD Bias Maximum This setpoint is set to the rating of the insulation or slightly less. A class F insulation is used in this motor which is rated at 155°C. Overload Curve If only one thermal limit curve is provided, the chosen overload curve should fit below it. When a hot and cold thermal limit curve is provided, the chosen overload curve should fit between the two curves and the programmed Hot/Cold ratio is used in the Thermal Capacity algorithm to take into account the thermal state of the motor. The best fitting 369 standard curve is curve # 4, as seen in Figure 7–2: MOTOR THERMAL LIMITS on page 7–9. Short Circuit Trip The short circuit trip should be set above the maximum locked rotor current but below the short circuit current of the fuses. The data sheets indicate a maximum locked rotor current of 550% FLC or 5.5 × FLC. A setting of 6 × FLC with a instantaneous time delay will be ideal but nuisance tripping may result due to unusually high demanding starts or starts while the load is coupled. If need be, set the S/C level higher to a maximum of 8 × FLC to override these conditions.
公司主營(yíng)產(chǎn)品圖展示
產(chǎn)品優(yōu)勢(shì)
1:國(guó)外專(zhuān)業(yè)的供貨渠道,具有價(jià)格優(yōu)勢(shì)
2:產(chǎn)品質(zhì)量保證,讓您售后無(wú)憂(yōu)
3:全國(guó)快遞包郵
4:一對(duì)一服務(wù)
公司主營(yíng)范圍簡(jiǎn)介
PLC可編程控制器模塊,DCS卡件,ESD系統(tǒng)卡件,振動(dòng)監(jiān)測(cè)系統(tǒng)卡件,汽輪機(jī)控制系統(tǒng)模塊,燃?xì)獍l(fā)電機(jī)備件等,優(yōu)勢(shì)品牌:Allen Bradley、BentlyNevada、ABB、Emerson Ovation、Honeywell DCS、Rockwell ICS Triplex、FOXBORO、Schneider PLC、GE Fanuc、Motorola、HIMA、TRICONEX、Prosoft等各種進(jìn)口工業(yè)零部件、歐美進(jìn)口模塊。
產(chǎn)品廣泛應(yīng)用于冶金、石油天然氣、玻璃制造業(yè)、鋁業(yè)、石油化工、煤礦、造紙印刷、紡織印染、機(jī)械、電子制造、汽車(chē)制造、塑膠機(jī)械、電力、水利、水處理/環(huán)保、鍋爐供暖、能源、輸配電等等