FCP280底板
感測(cè)變壓器次級(jí)中產(chǎn)生的電壓
T2次級(jí)中產(chǎn)生的電壓矢量相加。這動(dòng)作向傳感二極管提供電壓,即降壓傳感電壓和并聯(lián)電流互感器
通過(guò)T2的信號(hào)。感測(cè)電路? er直流輸出為? 過(guò)濾和應(yīng)用至誤差檢測(cè)器和欠頻極限。
當(dāng)電阻(單位功率因數(shù))負(fù)載連接到發(fā)電機(jī)時(shí),下降電位計(jì)兩端出現(xiàn)的電壓導(dǎo)致感應(yīng)
電壓90度,兩個(gè)電壓的矢量和接近與原始感測(cè)電壓相同;因此,幾乎沒(méi)有變化發(fā)生在發(fā)電機(jī)輸出電壓中。
當(dāng)滯后功率因數(shù)(感應(yīng))負(fù)載連接到發(fā)電機(jī),下降電位計(jì)兩端的電壓變得更高與感測(cè)電壓同相,以及兩者的組合矢量電壓導(dǎo)致更大的電壓被施加到感測(cè)
由于調(diào)節(jié)器的作用是在感覺(jué)直肌? ers
調(diào)節(jié)器通過(guò)降低發(fā)電機(jī)輸出作出反應(yīng)
電壓當(dāng)領(lǐng)先功率因數(shù)(電容性)負(fù)載連接到發(fā)電機(jī),下降電位計(jì)兩端的電壓變?yōu)榕c感測(cè)電壓的相位以及兩者的組合矢量電壓導(dǎo)致施加到感測(cè)recti的電壓較小? 呃。
然后調(diào)節(jié)器通過(guò)增加發(fā)電機(jī)電壓作出反應(yīng)。兩臺(tái)或多臺(tái)發(fā)電機(jī)并聯(lián)運(yùn)行期間,相互連接
對(duì)于無(wú)功電壓降,如果? 其中一臺(tái)發(fā)電機(jī)的eld勵(lì)磁變得過(guò)大并導(dǎo)致循環(huán)電流? 哦,在發(fā)電機(jī),循環(huán)電流將作為感應(yīng)負(fù)載出現(xiàn)在發(fā)電機(jī)勵(lì)磁過(guò)大,另一個(gè)具有電容性負(fù)載
發(fā)電機(jī)。并聯(lián)部件R4和T2將導(dǎo)致電壓發(fā)電機(jī)調(diào)節(jié)器過(guò)大? eld激勵(lì),以降低
發(fā)電機(jī)電壓,而其他發(fā)電機(jī)的電壓調(diào)節(jié)器將增加發(fā)電機(jī)電壓。
并聯(lián)交叉電流補(bǔ)償模式下并聯(lián)發(fā)電機(jī)運(yùn)行期間的傳感電路:并聯(lián)交叉電流賠償允許兩臺(tái)或多臺(tái)并聯(lián)發(fā)電機(jī)共享感應(yīng)無(wú)功負(fù)載
在以下情況下,發(fā)電機(jī)系統(tǒng)輸出電壓不會(huì)下降或降低:線路電流成比例且同相。這是通過(guò)以下方式實(shí)現(xiàn)的:
上述并聯(lián)無(wú)功電壓的動(dòng)作和電路下垂補(bǔ)償和電流互感器的互連
閉合串聯(lián)回路中的二次回路。循環(huán)電流導(dǎo)致系統(tǒng)
如前所述,對(duì)并聯(lián)電壓降補(bǔ)償作出反應(yīng)
The voltage developed in the secondary of the sensing transformer(s)
and the voltage developed in the secondary of T2 add vectorially. This
action provides a voltage to the sensing diodes that is the vector sum of
the stepped down sensing voltage and the parallel current transformer
signal through T2. The sensing recti? er dc output is ? ltered and applied
to the error detector and underfrequency limit.
When a resistive (unity power factor) load is connected to the generator,
the voltage that appears across the droop potentiometer leads the sensing
voltage by 90 degrees, and the vector sum of the two voltages is nearly
the same as the original sensing voltage; consequently, almost no change
occurs in generator output voltage.
When lagging power factor (inductive) load is connected to the
generator, the voltage across the droop potentiometer becomes more
in phase with the sensing voltage, and the combined vectors of the two
voltages result in a larger voltage being applied to the sensing recti? ers.
Since the action of the regulator is to maintain a constant voltage at the
sensing recti? ers, the regulator reacts by decreasing the generator output
voltage.
When a leading power factor (capacitive) load is connected to the
generator, the voltage across the droop potentiometer becomes out of
phase with the sensing voltage, and the combined vectors of the two
voltages result in a smaller voltage being applied to the sensing recti? ers.
Then the regulator reacts by increasing the generator voltage.During parallel operation of two or more generators interconnected
for reactive voltage droop, if ? eld excitation on one of the generators
becomes excessive and causes a circulating current to ? ow between the
generators, the circulating current will appear as an inductive load to the
generator with excessive excitation and a capacitive load to the other
generator(s). The parallel components R4 and T2 will cause the voltage
regulator of the generator with excessive ? eld excitation to decrease the
generator voltage while the voltage regulators of the other generator(s)
will increase the generator voltage.
Sensing circuit during parallel generator operation in parallel crosscurrent compensation mode: Parallel cross-current compensation
allows two or more paralleled generators to share inductive reactive loads
with no droop or decrease in the generator system output voltage when
the line currents are proportional and in phase. This is accomplished by
the action and circuitry described previously for parallel reactive voltage
droop compensation and the interconnection of the current transformer
secondaries in a closed series loop. Circulating currents cause the system
to react as described previously for parallel voltage droop compensation